
High Performance Decision Model Execution

Compilation of DMN into Machine Code
Dr Jolyon Cox and Dr Jan Purchase - www.rapidgen.com - www.luxmagi.com

http://www.rapidgen.com/
http://www.luxmagi.com/

2

Overview

 Demand for High-Performance Decision Services

 Can’t be met exclusively with high-spec cloud servers

 We Address

 What drives the need for high-efficiency decision-making?

 Which techniques are used to achieve it?

 What are DMN’s barriers to efficiency?

 How can we overcome them?

 We Demonstrate

 Anatomy of an example high-performance decision model

 Compilation and execution of this model

 We’ll Take Questions at Any Time

3

 Driven by

 Data Explosion: ‘Fine-Grain Decisions’

 More data sources, personalization

 Complexity of ‘Enlightened decisions’

 Analytic and AI fuelled decisions

 Modest hardware available to
make ‘edge decisions’

 Bringing decisions to the data

Need For Highly Efficient Decisions

4

Efficiency Needed to Handle Data Explosion

 Geometrically Increasing Data – ‘Fine-Grain’ Decisions

 Data source proliferation

 Sensors everywhere – IoT

 Increased access to and application of unstructured data

 Growing finer-grain applications for decision management

 Compliance e.g., IFRS-17 contract-by contract processing

 Personalization e.g., customer journey

5

Efficiency Needed for ‘Enlightened’ Decisions

 New Data Intensive Applications Driven by AI

 Inference of customer identity

 Deduction of customer need and intent

 Detection of ‘outlier’ behaviour

 Indicative of future actions, fraud, incipient failure

 Sensor and input calibration using reinforcement learning

 Need to be ‘Micro-Accountable’

 For compliance – e.g., GDPR

 For human interoperability (XAI)

6

 Increased Need to Make Decisions ‘At the Edge’

 Where data is first manifest and most voluminous

 Instead of communicating huge volumes to the centre

 Perform Some Tasks ‘At the Edge’

 Aggregate, apply analytics, spot local patterns, calibrate

 Generate knowledge/inferences

 React, make decisions – subject to centralized confirmation

 Protect centre from harm (e.g., DoS)

 Without Real-time Involvement of the Core

 Using 1000s of Low-Spec I/O Devices

Move Towards Decentralized ‘Edge’ Decisions

7

Move To Decentralized ‘Edge’ Decisions

 Advantages

 ‘Natural’ parallelism, distribution of tasks

 Data collection, cleaning and ethical filtering at source

 Early aggregation – to minimize transport bandwidth

 Local sensor collaboration, peer-to-peer ensemble behaviours

 High redundancy

 Supports fault detection, self healing networks – no SPoF

 Less reliance on internet connection

 Support Byzantine security - resilience to attack

 Applications

 Remote/hostile environments: in-body, space, deep-sea

 High-volume/low-signal: surveillance, failure detection

8

Summing Up…

 Fine-Grain, Enlightened and Edge Decisions

 Require more efficient decision services

 Sometimes restricted to modest hardware and connectivity

 An Example Fine-Grain Decision

 Driven by financial compliance

9

Example High Performance Decision

 International Financial Accounting Standard (IFRS) 17

 Financial statement and disclosure of incremental profit

 Determination of contractual service margins

 Dynamic detection and handling of ‘onerous’ contracts

 Contract level decision, involving 100Ms contracts

 Ideal for High-Performance Decision Management

 IFRS-17 has many options and variations

 IFRS-17 will change regularly in the early days

 IFRS-17 metrics can be used in many personalized decisions

 Customer value, NBA, claim/fraud propensity, product design

10

Example High Performance Decision

 Decision Model Statistics

 Modelled and tested using Trisotech DES

 2 Main DRDs, 6 subviews

 37 decisions, 29 Knowledge Sources, 6 BKMs, 4 Input Data

 Covers about 25% of IFRS-17 including

 Initial recognition, contract asset/liability [16(a), 32, 36, 38, 47]

 Subsequent measurement, becoming profitable/onerous

 Release of CSM in profitable and onerous contracts

 Reconciliation of contract liability [44(be), B96-B97, 101]

 Disclosure of profit and loss [48]

 Insurance service result [84-85, 100, B123 or B124]

11

Decision Model Key Features

 Fine Grain Inputs

 Separate Concerns

 PV Calculations

 Fulfilment Flows

 Risk Adjustment

 CSM

 Coverage Allocation

 Financial Position

 P&L

12

 Has Impact Outside Compliance

Decision Model Key Features

Customer
Lifetime
Value

Claim
Propensity

Product
Performance

13

Decision Model Key Features

 Focus on Traceability

 For example: Risk Adjustment Disaggregation option

14

Decision Model Key Features

 Focus on Test Driven Approach

 Model supports first 50 illustrative examples with tests

 Used in production, in training, to assess options

 Coupled with dashboard for profit projections

15

Coming Up…

 Key Challenges in Efficient Execution of This Model

 How to create efficient services from DMN

 DMN’s barriers to efficiency

 Our suggestions to overcome them

 Demonstration of Model Execution Performance

16

Achieving High Efficiency – The RPL Language

 RPL – a Simple, Low-level Language

 Compilation Directly into Machine Code

 Tiny Runtime Footprint (4Mb RTS Code)

 Logic Expressed Entirely as Decision Tables

 Multi-Ruling by Default

 Output Assignments Performed by Actions

 Built-In Iteration

 Easily Extended to Add New Features

 The RPL Compiler is Written in RPL

17

Achieving High Efficiency – RPL Implementation

 Condition Tests Strictly Sequential

 Rules Maintained as Bitmasks Selectively Cleared

 Some Tests Need only Two Machine Instructions

 Positive & Negative Condition Tests in Parallel

 Tests in Dead Rules can be Optimised Away

 Inline Code Wherever Possible

18

A Simple DMN Decision Table

19

The Same Decision Table Translated To RPL

*DETAB Approval_Status

I Approval_Status I

 Approval_Status$$ I

*

* Decision table Approval_Status | Hit Policy: UNIQUE

*

M

 isAffordable = $TRUE Y Y Y N ELSE=SINGLE

 RiskCategory = "Medium","Low" Y Y - - -

 RiskCategory = "High" - - Y - -

 Age >= 18 Y N - - -

A

 $$UNIQUE_FAIL X

 Approval_Status MV "Approved" X

 Approval_Status MV "Declined" . X X X .

 $$RETURN Approval_Status X X X X .

 $$FAIL X

20

Converting DMN to RPL

 2-Stage XSL Transform Using XSLT 3.0

 FEEL Expressions Parsed Into RPL Code

(Writing parsers in XSLT is hard!)

 RPL Language Enhanced to Support

 FEEL date and duration types

 DMN hit policies

 Decimal-128 numbers

21

Elegance Versus Efficiency

 Single Number Type: Decimal-128

 Dynamic Strings

 Immutable Lists

 Dynamic Interim Context and Return Types

 Arcane Hit Policies (P, O & Multiple Outputs)

 Tri-State Logic (NULLs)

 Complex Conditional Expressions

 Enumerations Expressed as Strings

22

Single Number Type: Decimal-128

 ±0.000000000000000000000000000000000×10−6143

to ±9.999999999999999999999999999999999×106144

 Universe contains about 1086 particles

 World money supply is about 1014 US dollars

 Disadvantages

 Very few hardware platforms implement decimal-128

 Emulation cost on Intel is a factor of about 100

 Integers much faster for age, count of orders etc.

 Hard to deduce when integers can be used instead

 Constraints? Modelling tool analysis?

23

Demonstration in RapidGen Genius

 Running on Mobile Core i7-4710HQ @ 2.5GHz

 No Network Connection

 Translate IFRS-17 DMN XML to RPL (Two Steps)

 Compile RPL Model Code with Test Program

 Run Test Program to Check Correct Outputs

 Run Many Silent Passes to Estimate Timing

24

Conclusions

 Efficiency is Still Vital

 DMN Poses Challenges to High Performance Execution

 Solutions involve

 Hardware aligned implementation (e.g., ‘rule masks’)

 Performance best practices or tooling (e.g., explicit sub-typing)

 Minimizing instruction count and re-evaluation

 Using all available parallelism (e.g., condition tests)

 Additions to standard

 explicit integer type constraint

 optional treatment of NULL

 Follow Up

 jolyon@rapidgen.co.uk, purchase@luxmagi.com

mailto:jolyon@rapidgen.co.uk
mailto:purchase@luxmagi.com

25

Any Questions?

